Copy-Paste is a simple and effective data augmentation strategy for instance segmentation. By randomly pasting object instances onto new background images, it creates new training data for free and significantly boosts the segmentation performance, especially for rare object categories. Although diverse, high-quality object instances used in Copy-Paste result in more performance gain, previous works utilize object instances either from human-annotated instance segmentation datasets or rendered from 3D object models, and both approaches are too expensive to scale up to obtain good diversity. In this paper, we revisit Copy-Paste at scale with the power of newly emerged zero-shot recognition models (e.g., CLIP) and text2image models (e.g., StableDiffusion). We demonstrate for the first time that using a text2image model to generate images or zero-shot recognition model to filter noisily crawled images for different object categories is a feasible way to make Copy-Paste truly scalable. To make such success happen, we design a data acquisition and processing framework, dubbed "X-Paste", upon which a systematic study is conducted. On the LVIS dataset, X-Paste provides impressive improvements over the strong baseline CenterNet2 with Swin-L as the backbone. Specifically, it archives +2.6 box AP and +2.1 mask AP gains on all classes and even more significant gains with +6.8 box AP +6.5 mask AP on long-tail classes.
translated by 谷歌翻译
Generative adversarial networks (GANs) have made great success in image inpainting yet still have difficulties tackling large missing regions. In contrast, iterative algorithms, such as autoregressive and denoising diffusion models, have to be deployed with massive computing resources for decent effect. To overcome the respective limitations, we present a novel spatial diffusion model (SDM) that uses a few iterations to gradually deliver informative pixels to the entire image, largely enhancing the inference efficiency. Also, thanks to the proposed decoupled probabilistic modeling and spatial diffusion scheme, our method achieves high-quality large-hole completion. On multiple benchmarks, we achieve new state-of-the-art performance. Code is released at https://github.com/fenglinglwb/SDM.
translated by 谷歌翻译
在过去的几十年中,卷积神经网络(CNN)在计算机视觉方面取得了令人印象深刻的成功。图像卷积操作可帮助CNN在与图像相关的任务上获得良好的性能。但是,图像卷积具有很高的计算复杂性,难以实现。本文提出了可以在频域中训练的Cemnet。这项研究的最重要动机是,我们可以根据互相关定理替换频域中的直接元素乘法操作来替换频域中的图像卷积,从而显然降低了计算复杂性。我们进一步介绍了一种体重固定机制,以减轻过度拟合的问题,并分析批准,泄漏的速度和频域中辍学的工作行为,以设计其为Cemnet的对应物。此外,为了处理由离散的傅立叶变换带来的复杂输入,我们为CENNET设计了两个分支网络结构。实验结果表明,Cemnet在MNIST和CIFAR-10数据库上取得了良好的性能。
translated by 谷歌翻译
最近的研究表明,在介绍问题中建模长期相互作用的重要性。为了实现这一目标,现有方法利用独立的注意技术或变压器,但考虑到计算成本,通常在低分辨率下。在本文中,我们提出了一个基于变压器的新型模型,用于大孔介入,该模型统一了变压器和卷积的优点,以有效地处理高分辨率图像。我们仔细设计框架的每个组件,以确保恢复图像的高保真度和多样性。具体而言,我们自定义了一个面向内部的变压器块,其中注意模块仅从部分有效令牌中汇总非本地信息,该信息由动态掩码表示。广泛的实验证明了在多个基准数据集上新模型的最新性能。代码在https://github.com/fenglinglwb/mat上发布。
translated by 谷歌翻译
受益于生成对抗性网络(GAN)的发展,面部操纵最近在学术界和工业中取得了重大进展。它激发了越来越多的娱乐应用,但也遭到对个人隐私甚至政治安全的严重威胁。为了减轻这种风险,已经提出了许多对策。然而,大多数方法以被动方式设计,这是为了检测它们在广泛传播之后是否篡改了面部图像或视频。这些基于检测的方法具有致命的限制,即它们仅适用于前后的取证,但不能阻止对恶意行为的发挥作用。为了解决限制,在本文中,我们提出了一种新颖的倡议防御框架,以降低恶意用户控制的面部操纵模型的性能。基本思想是在操纵之前将难以察觉的毒液纳入目标面部数据。为此,我们首先使用替代模型模仿目标操纵模型,然后设计毒药扰动发生器以获得所需的毒液。交替的培训策略进一步利用以培训代理模型和扰动发生器。两个典型的面部操纵任务:面部属性编辑和面部重新制定,在我们的倡议防御框架中考虑。广泛的实验证明了我们在不同环境中框架的有效性和稳健性。最后,我们希望这项工作能够在针对更多对抗方案的主动对策上阐明一些灯。
translated by 谷歌翻译
头发编辑是计算机视觉和图形中有趣和挑战的问题。许多现有方法需要粗略的草图或掩码作为用于编辑的条件输入,但是这些交互既不直接也不高效。为了从繁琐的相互作用过程中获取用户,本文提出了一种新的头发编辑交互模式,其能够基于用户提供的文本或参考图像单独地或共同地操纵头发属性。为此目的,我们通过利用对比语言图像预训练(剪辑)模型的强大图像文本表示能力来编码共享嵌入空间中的图像和文本条件,并提出统一的头发编辑框架。通过精心设计的网络结构和丢失功能,我们的框架可以以脱谕方式执行高质量的头发编辑。广泛的实验在操纵准确性,编辑结果的视觉现实主义和无关的属性保存方面表现出我们的方法的优越性。项目repo是https://github.com/wty-ustc/hairclip。
translated by 谷歌翻译
自然语言视频本地化(NLVL)是视觉语言理解区域的重要任务,该方面还要求深入了解单独的计算机视觉和自然语言侧,但更重要的是两侧之间的相互作用。对抗性脆弱性得到了很好的认可,作为深度神经网络模型的关键安全问题,需要谨慎调查。尽管在视频和语言任务中进行了广泛但分开的研究,但目前对NLVL等愿景联合任务的对抗鲁棒性的理解较少。因此,本文旨在通过检查攻击和防御方面的三个脆弱性,全面调查NLVL模型的对抗性鲁棒性。为了实现攻击目标,我们提出了一种新的对抗攻击范式,称为同义句子感知对抗对抗攻击对逆向(潜行),这捕获了视觉和语言侧面之间的跨模式相互作用。
translated by 谷歌翻译
远程时间对齐至关重要,但对视频恢复任务有挑战性。最近,一些作品试图将远程对齐分成几个子对齐并逐步处理它们。虽然该操作有助于建模遥控对应关系,但由于传播机制,误差累积是不可避免的。在这项工作中,我们提出了一种新颖的通用迭代对准模块,其采用逐渐改进方案进行子对准,产生更准确的运动补偿。为了进一步提高对准精度和时间一致性,我们开发了一种非参数重新加权方法,其中每个相邻帧的重要性以用于聚合的空间方式自适应地评估。凭借拟议的策略,我们的模型在一系列视频恢复任务中实现了多个基准测试的最先进的性能,包括视频超分辨率,去噪和去束性。我们的项目可用于\ url {https:/github.com/redrock303/revisiting-temporal-alignment-for-video-Restion.git}。
translated by 谷歌翻译
我们考虑单个图像超分辨率(SISR)问题,其中基于低分辨率(LR)输入产生高分辨率(HR)图像。最近,生成的对抗性网络(GANS)变得幻觉细节。大多数沿着这条线的方法依赖于预定义的单个LR-intle-hr映射,这对于SISR任务来说是足够灵活的。此外,GaN生成的假细节可能经常破坏整个图像的现实主义。我们通过为Rich-Detail SISR提出最好的伙伴GANS(Beby-GaN)来解决这些问题。放松不变的一对一的约束,我们允许估计的贴片在培训期间动态寻求最佳监督,这有利于产生更合理的细节。此外,我们提出了一种区域感知的对抗性学习策略,指导我们的模型专注于自适应地为纹理区域发电细节。广泛的实验证明了我们方法的有效性。还构建了超高分辨率4K数据集以促进未来的超分辨率研究。
translated by 谷歌翻译
Representing and synthesizing novel views in real-world dynamic scenes from casual monocular videos is a long-standing problem. Existing solutions typically approach dynamic scenes by applying geometry techniques or utilizing temporal information between several adjacent frames without considering the underlying background distribution in the entire scene or the transmittance over the ray dimension, limiting their performance on static and occlusion areas. Our approach $\textbf{D}$istribution-$\textbf{D}$riven neural radiance fields offers high-quality view synthesis and a 3D solution to $\textbf{D}$etach the background from the entire $\textbf{D}$ynamic scene, which is called $\text{D}^4$NeRF. Specifically, it employs a neural representation to capture the scene distribution in the static background and a 6D-input NeRF to represent dynamic objects, respectively. Each ray sample is given an additional occlusion weight to indicate the transmittance lying in the static and dynamic components. We evaluate $\text{D}^4$NeRF on public dynamic scenes and our urban driving scenes acquired from an autonomous-driving dataset. Extensive experiments demonstrate that our approach outperforms previous methods in rendering texture details and motion areas while also producing a clean static background. Our code will be released at https://github.com/Luciferbobo/D4NeRF.
translated by 谷歌翻译